
COMP 520 - Compilers

Lecture 11 – Recap of Contextual Analysis in PA3

1

Midterm 1 Results

• Maximum: 100 (18)

• Median: 95.5

• Mean: 94.8

2
COMP 520: Compilers – S. Ali

Midterm 1 Results (2)

• Question 2: comparable to previous midterm

• Question 3: was exactly from a previous midterm

• Question 4: was harder than a previous midterm

3
COMP 520: Compilers – S. Ali

Midterm 1 Results (3)

• Question 2: comparable to previous midterm

• Question 3: was exactly from a previous midterm

• Question 4: was harder than a previous midterm

• In comparison, the average for this class was more than 10
points higher than an earlier class

4
COMP 520: Compilers – S. Ali

Upcoming Code Generation

•We will have a few in-class demos where we
SHOW how a processor works.

•Will show visualizations of what will happen
in a program in some live demos.

5
COMP 520: Compilers – S. Ali

LL(1), 4 Statement Cases

this(.id)*(= Expr ;| [Expr] = Expr ; | (ArgList?) ;)

| boolean id = Expr ;

| id (.id(.id)*(=Expr;|[Expr]=Expr;|(ArgList?);)

| =Expr; | (ArgList?);

| [(] id = Expr;|Expr] = Expr;)

| id = Expr;

)

6
COMP 520: Compilers – S. Ali

Was missing from earlier slide

Please note: miniJava
•miniJava does not have typecasting nor automatic

conversions.

•miniJava does not allow boolean × int × Op

7
COMP 520: Compilers – S. Ali

Programming Assignment 3
Identification and Type-Checking

8
COMP 520: Compilers – S. Ali

You own the ASTs for PA3 and forward

•Can add, edit, remove any ASTs you want.

9
COMP 520: Compilers – S. Ali

Strategy

• Two separate Visitor implementations

• First identification, then type-checking

10
COMP 520: Compilers – S. Ali

Strategy (2)

• Two separate Visitor implementations

• First identification, then type-checking

• It is possible to do this in one AST traversal.
Optional, is a PA5 extra credit item.

11
COMP 520: Compilers – S. Ali

Identification Goal

• Every Identifier gets a “decl” field added,
of type Declaration

•We want to locate where every identifier is declared.

•Could be a VarDecl, ParameterDecl, MemberDecl,
ClassDecl

12
COMP 520: Compilers – S. Ali

Why?

•Why is it that only syntax checking, and
context checking is enough for ensuring an
input program is correct?

13
COMP 520: Compilers – S. Ali

Today

• First, we will cover type-checking

• Then, we will page identification back in

•Goal: Learn how to properly ensure type checking is
implemented, and go backwards to determine how to
enable type checking with identification.

14
COMP 520: Compilers – S. Ali

PA3 – Type Checking

15
COMP 520: Compilers – S. Ali

Type-Checking Table

• In miniJava, type order does not matter,
so A×B×op is the same as B×A×op

• This means we can simplify our TypeChecking table.

16
COMP 520: Compilers – S. Ali

miniJava – Types must match

• For miniJava, the types must match. There is no
automatic type conversions nor manual typecasting.

17
COMP 520: Compilers – S. Ali

miniJava – Types must match

• For miniJava, the types must match. There is no
automatic type conversions nor manual typecasting.

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the
result type is that type?

18
COMP 520: Compilers – S. Ali

miniJava – Types must match

•Does this mean we can use a REALLY simple type-
checking table where both types must match, and the
result type is that type?

• Still need to formally clarify
Type rules.

19
COMP 520: Compilers – S. Ali

Type-Checking Table (2)
Type Checking Rules

Operand Types Operand Result

boolean × boolean &&, || boolean

int × int >, >=, <, <= boolean

int × int +, -, *, / int

α × α ==, != boolean

int (Unary) - int

boolean (Unary) ! boolean

20
COMP 520: Compilers – S. Ali

ClassType

• If two objects are both ClassType, are they
comparable?

21
COMP 520: Compilers – S. Ali

ClassType (No polymorphism in miniJava)

• If two objects are both ClassType,
are they comparable?

•No, the underlying Identifier text
must match.

•Why is this enough?

22
COMP 520: Compilers – S. Ali

What type is ArrayType?

•Recall: new int[4]

• This expression is of ArrayType(IntType)

• Thus, it can only be assigned to variables of type
ArrayType(IntType)

•IntType is shorthand for:
BaseType(TypeKind.INT)

23
COMP 520: Compilers – S. Ali

What type is ArrayType? (2)

• For array types:
• First: Are both types ArrayType?
• Second: Do the element types match? (Recursion)

•Recursion needed to match ArrayType of ArrayType of
ArrayType of ClassType.

24
COMP 520: Compilers – S. Ali

Type-Checking Methods

• Scoped Identification only uses context and
identifiers. Therefore, overloading methods by
parameter types/counts is not allowed in miniJava.

25
COMP 520: Compilers – S. Ali

Type-Checking Methods (2)

•As such, make sure there is an expression for every
parameter, and that the types match.

26
COMP 520: Compilers – S. Ali

Type Errors

• The ErrorType is compatible with ALL other types, and
the result type is always another ErrorType and this
does not cause an error to be reported.

• If a type is not allowed in an operation with another
type, then the result type is an ErrorType.

27
COMP 520: Compilers – S. Ali

Unsupported Type

• The UNSUPPORTED type is not compatible with any
type (including itself) and causes an error to be
reported. The result type will be ErrorType.

•Make sure String’s type is UNSUPPORTED, otherwise
String can be initialized with new String(), which is not
implemented in miniJava.

28
COMP 520: Compilers – S. Ali

Unsupported Type (2)

• The String predefined class is an UNSUPPORTED type.

• String is not supported in miniJava, but available to be
implemented as a part of PA5.

•We need String to be able to declare the main
method.

29
COMP 520: Compilers – S. Ali

Unsupported Type (3)

•UNSUPPORTED×ErrorType

•Question: should an error be reported?

30
COMP 520: Compilers – S. Ali

Unsupported Type (4)

•UNSUPPORTED×ErrorType does not need to be
reported (only way ErrorType exists is if an error was
reported earlier anyway).

•But it can be reported if you want to report an extra
error where String is utilized.

31
COMP 520: Compilers – S. Ali

Type-Checking Strategy (1)

• Implement a TypeChecking Visitor that uses a TypeDenoter
return type.

• Visiting a node synthesizes a TypeDenoter for that type.

32
COMP 520: Compilers – S. Ali

Traverse an AST bottom-up?

•Not talking about SR parsing here.

•We’re done with Parsing and Syntactic Analysis

33
COMP 520: Compilers – S. Ali

Traverse an AST bottom-up? (2)

• The leaf nodes of an AST are visited first.

•Why?

34
COMP 520: Compilers – S. Ali

Traverse an AST bottom-up? (2)

• The leaf nodes of an AST are visited first.

• If I have an expression: int b = 20 + 5 * 100

• I don’t know the type of that expression just by
looking at the “Expression” AST

35
COMP 520: Compilers – S. Ali

Traverse an AST bottom-up? (3)

• If I have an expression: int b = 20 + 5 * 100

• I don’t know the type of that expression just by
looking at the “Expression” AST

36
COMP 520: Compilers – S. Ali

Traverse an AST bottom-up? (3)

• If I have an expression: int b = 20 + 5 * 100

37
COMP 520: Compilers – S. Ali

S

E $

T TOp +

()E

T TOp *

5 100

20

Traverse an AST bottom-up? (4)

• If I have an expression: int b = 20 + 5 * 100

38
COMP 520: Compilers – S. Ali

S

E $

T TOp +

()E

T TOp *

5 100

20

INT

INT INT

INT

Traverse an AST bottom-up? (5)

• If I have an expression: int b = c + d * e

39
COMP 520: Compilers – S. Ali

S

E $

T TOp +

()E

T TOp *

d e

c

Traverse an AST bottom-up? (5)

• If I have an expression: int b = c + d * e

40
COMP 520: Compilers – S. Ali

S

E $

T TOp +

()E

T TOp *

d e

c

How can we
determine the
type of c, d, e
(and b)?

Type-Checking Strategy (2)

• Implement a TypeChecking Visitor that uses a TypeDenoter
return type.

• Visiting a node synthesizes a TypeDenoter for that type.

• Create a method, input is the two TypeDenoters, (or one for
Unary), and output is the resultant TypeDenoter.

41
COMP 520: Compilers – S. Ali

Type-Checking Strategy (3)

• Implement a TypeChecking Visitor that uses a TypeDenoter
return type.

• Visiting a node synthesizes a TypeDenoter for that type.

• Create a method, input is the two TypeDenoters, (or one for
Unary), and output is the resultant TypeDenoter.

• Or create a table, but that would have a lot of null entries.

42
COMP 520: Compilers – S. Ali

Type-Checking Strategy (2)

• Ensure index expressions are integers
A[IndexExpr]

• Ensure condition expressions in if/while are Boolean

if(CondExpr) / while(CondExpr)

• Ensure operands are compatible, and return the appropriate
type when visiting that BinExpr/UnaryExpr

A a;

a = 3 + a;

43
COMP 520: Compilers – S. Ali

Back to Identification

44
COMP 520: Compilers – S. Ali

Scoped Identification Stack

• Some languages do not let you access all members in
a stack.

• This is not the case for Java.

45
COMP 520: Compilers – S. Ali

Scoped Identification Stack (2)

• Some languages do not let you access all members in a
stack.
• This is not the case for Java.

•Actually, this is mostly not a case for a lot of languages
• For example, std::priority_queue says you can’t

iterate through it, but you can just get the underlying
container.

46
COMP 520: Compilers – S. Ali

Upcoming Side Note*

•As we will see, many language constraints like
public/private are only enforced at the
compiler,…
•Except interpreted languages, then it is
enforced by the interpreter.
•Key point: hardware doesn’t care, memory is
memory.

47
COMP 520: Compilers – S. Ali

Identification Cache

• Identifier “x” only makes sense in context.

• Even if two identifiers’ underlying text is the same,
the declaration can be different when appearing in
different parts of the code.

48
COMP 520: Compilers – S. Ali

Both use “x” as the identifier,
but can only tell them apart in context.

Left-most Reference

•Only the left-most reference
should be resolved normally (start
at the top of the SI stack, then
work down).

•Once you know the Declaration of
the left-most reference, you have
a context.

49
COMP 520: Compilers – S. Ali

Left-most Reference

•QualRef(LHS,RHS): LHS is a
Reference, and RHS is an
Identifier.

•With the type of the LHS (the
context), resolve the RHS.

• a.b means “.b” is resolved in the
context of the type of “a”, which is
class “A”.

50
COMP 520: Compilers – S. Ali

Left-most Reference

•With the type of the LHS (the
context), resolve the RHS.

•Note: this means that you can
bypass local variables.

• “a.b.c.x” but “b”, “c”, “x” were all
locally defined.

51
COMP 520: Compilers – S. Ali

QualRef Strategy

• Try to get the “context” by visiting the LHS reference.

•With that context, resolve the RHS.

• E.g. “a.b” will return the context of class “B”, thus
allowing resolution of “a.b.c” where “c” is in the
context of “B”

52
COMP 520: Compilers – S. Ali

No one strategy dominates all others

•How you choose to identify “context” is up to you. It
can be a String, ClassDecl, TypeDenoter, etc.

• Even more important to plan PA3 than other
assignments before starting to code.

• If you change your Visitor’s parameter or return type,
you may have to redo the entire class declaration!

53
COMP 520: Compilers – S. Ali

Other Contextual Constraints

54
COMP 520: Compilers – S. Ali

Contextual Analysis

• There are contextual parts of Java (and miniJava) that
do not quite fit Identification or Type Checking.

•We can easily implement these as a part of either.

55
COMP 520: Compilers – S. Ali

Contextual Analysis (2)

• If an identifier is being declared,
then it cannot be used in the expression.

• Even if the expression can be evaluated first!

56
COMP 520: Compilers – S. Ali

Not allowed!

Contextual Analysis (3)

• You cannot have a variable declaration only
in a scope to itself.

•A BlockStmt (new scope) is necessary for VarDeclStmt.

57
COMP 520: Compilers – S. Ali

Not allowed!

End

58

59
COMP 520: Compilers – S. Ali

60
COMP 520: Compilers – S. Ali

61
COMP 520: Compilers – S. Ali

62
COMP 520: Compilers – S. Ali

	Slide 1: COMP 520 - Compilers
	Slide 2: Midterm 1 Results
	Slide 3: Midterm 1 Results (2)
	Slide 4: Midterm 1 Results (3)
	Slide 5: Upcoming Code Generation
	Slide 6: LL(1), 4 Statement Cases
	Slide 7: Please note: miniJava
	Slide 8: Programming Assignment 3
	Slide 9: You own the ASTs for PA3 and forward
	Slide 10: Strategy
	Slide 11: Strategy (2)
	Slide 12: Identification Goal
	Slide 13: Why?
	Slide 14: Today
	Slide 15: PA3 – Type Checking
	Slide 16: Type-Checking Table
	Slide 17: miniJava – Types must match
	Slide 18: miniJava – Types must match
	Slide 19: miniJava – Types must match
	Slide 20: Type-Checking Table (2)
	Slide 21: ClassType
	Slide 22: ClassType (No polymorphism in miniJava)
	Slide 23: What type is ArrayType?
	Slide 24: What type is ArrayType? (2)
	Slide 25: Type-Checking Methods
	Slide 26: Type-Checking Methods (2)
	Slide 27: Type Errors
	Slide 28: Unsupported Type
	Slide 29: Unsupported Type (2)
	Slide 30: Unsupported Type (3)
	Slide 31: Unsupported Type (4)
	Slide 32: Type-Checking Strategy (1)
	Slide 33: Traverse an AST bottom-up?
	Slide 34: Traverse an AST bottom-up? (2)
	Slide 35: Traverse an AST bottom-up? (2)
	Slide 36: Traverse an AST bottom-up? (3)
	Slide 37: Traverse an AST bottom-up? (3)
	Slide 38: Traverse an AST bottom-up? (4)
	Slide 39: Traverse an AST bottom-up? (5)
	Slide 40: Traverse an AST bottom-up? (5)
	Slide 41: Type-Checking Strategy (2)
	Slide 42: Type-Checking Strategy (3)
	Slide 43: Type-Checking Strategy (2)
	Slide 44: Back to Identification
	Slide 45: Scoped Identification Stack
	Slide 46: Scoped Identification Stack (2)
	Slide 47: Upcoming Side Note*
	Slide 48: Identification Cache
	Slide 49: Left-most Reference
	Slide 50: Left-most Reference
	Slide 51: Left-most Reference
	Slide 52: QualRef Strategy
	Slide 53: No one strategy dominates all others
	Slide 54: Other Contextual Constraints
	Slide 55: Contextual Analysis
	Slide 56: Contextual Analysis (2)
	Slide 57: Contextual Analysis (3)
	Slide 58: End
	Slide 59
	Slide 60
	Slide 61
	Slide 62

